GCE

Mathematics

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1 (i) First two terms are $1-\frac{1}{2} x_{\ldots \ldots \ldots}$
B1

Third term $=\frac{\frac{1}{2} \cdot-\frac{1}{2}}{2}\left[(-x)^{2}\right.$ or x^{2} or $\left.-x^{2}\right]$
$=-\frac{1}{8} x^{2}$
(ii) Attempt to replace x by $2 y-4 y^{2}$ or $2 y+4 y^{2}$

First two terms are $1-y$
Third term $=+\frac{3}{2} y^{2}$ or $\quad \sqrt{ }(4 b+2) y^{2}$

2 (i) $A(x-2)+B=7-2 x$
$A=-2$
$B=3$
(ii) $\int \frac{A}{x-2} \mathrm{~d} x=\left(A\right.$ or $\left.\frac{1}{A}\right) \ln (x-2)$
$\int \frac{B}{(x-2)^{2}} \mathrm{~d} x=-\left(B\right.$ or $\left.\frac{1}{B}\right) \cdot \frac{1}{x-2}$
Correct f.t. of A \& B; $A \ln (x-2)-\frac{B}{x-2}$
Using limits $=-2 \ln 3+2 \ln 2+\frac{1}{2} \quad$ ISW

3 (i) State/imply $\frac{\mathrm{d}}{\mathrm{d} x}(\sec x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{1}{\cos x}\right)$ or $\frac{\mathrm{d}}{\mathrm{d} x}(\cos x)^{-1}$

Attempt quotient rule or chain rule to power -1

Obtain $\frac{\sin x}{\cos ^{2} x}$ or.$--(\sin x)(\cos x)^{-2}$
Simplify with suff evid to AG e.g. $\frac{1}{\cos x} \cdot \frac{\sin x}{\cos x}$
(ii) Use $\cos 2 x=+/-1+/-2 \cos ^{2} x$ or $+/-1+/-2 \sin ^{2} x$

Correct denominator $=\sqrt{2 \cos ^{2} x}$
Evidence that $\frac{\tan x}{\cos x}=\sec x \tan x$ or $\int \frac{\tan x}{\cos x} d x=\sec x$ $\frac{1}{\sqrt{2}} \sec x \quad(+\mathrm{c})$

M1

A1 3

M1
B1
$A 1 \sqrt{ } 3 \quad$ where $\mathrm{b}=\operatorname{cf}\left(x^{2}\right)$ in part (i)

6

M1
A1
A1 3

B1

B1 Negative sign is required

B1 $\sqrt{ } \quad$ Still accept lns as before

B1 $4 \quad$ No indication of \ln (negative)
7
B1 \quad Not just $\sec x=\frac{1}{\cos x}$

M1

A1

A1 4 Or vice versa. Not just $=\sec x \cdot \tan x$

M1

A1

B1 irrespective of any const multiples

A1 $4 \quad$ Condone θ for x except final line

4 (i) Attempt to use $\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$ or $\frac{\mathrm{d} y}{\mathrm{~d} t} \cdot \frac{\mathrm{~d} t}{\mathrm{~d} x}$
$\frac{4}{2 t}$ or $\frac{2}{t}$
(ii) Subst $t=4$ into their (i), invert \& change sign

Subst $t=4$ into $(x, y) \&$ use num grad for tgt/normal $y=-2 x+52$ AEF CAO (no f.t.)
(iii) Attempt to eliminate t from the 2 given equations
$x=2+\frac{y^{2}}{16}$ or $y^{2}=16(x-2)$ AEF ISW

5 (i) Attempt to connect $\mathrm{d} x$ and $\mathrm{d} u$
$5-x=4-u^{2}$
Show $\int \frac{4-u^{2}}{2+u} .2 u \mathrm{~d} u$ reduced to $\int 4 u-2 u^{2} \mathrm{~d} u \quad \mathbf{A G}$
Clear explanation of why limits change
$\frac{4}{3}$
(ii)(a) $5-x$
(b) Show reduction to $2-\sqrt{x-1}$
$\int \sqrt{x-1} \mathrm{~d} x=\frac{2}{3}(x-1)^{\frac{3}{2}}$
$\left(10-\frac{2}{3} .8\right)-\left(4-\frac{2}{3}\right)=\frac{4}{3}$ or $4 \frac{2}{3}-3 \frac{1}{3}=\frac{4}{3}$

6 (i) Work with correct pair of direction vectors
Demonstrate correct method for finding scalar product
Demonstrate correct method for finding modulus
24, 24.0 (24.006363..) (degrees) 0.419 ($0.41899 .$.$) (rad)$
(ii) Attempt to set up 3 equations

Find correct values of $(s, t)=(1,0)$ or $(1,4)$ or $(5,12)$
Substitute their (s, t) into equation not used
Correctly demonstrate failure
(iii) Subst their (s, t) from first 2 eqns into new $3^{\text {rd }}$ eqn $a=6$

M1 Not just quote formula

A1 2
M1
M1
A1 3 Only the eqn of normal accepted
M1
A1 2 Mark at earliest acceptable form.

7

M1 Including $\frac{\mathrm{d} u}{\mathrm{~d} x}=$ or $\mathrm{d} u=\ldots \mathrm{d} x ; \operatorname{not} \mathrm{d} x=\mathrm{d} u$
B1 perhaps in conjunction with next line
A1 In a fully satisfactory \& acceptable manner
B1 e.g. when $x=2, u=1$ and when $x=5, u=2$
B1 5 not dependent on any of first 4 marks
*B1 1 Accept $4-x-1=5-x$ (this is not AG) dep*B1

B1 Indep of other marks, seen anywhere in (b)

B1 3 Working must be shown

9

M1
M1 Of any two 3×3 vectors rel to question
M1 Of any vector relevant to question
A1 4 Mark earliest value, allow trunc/rounding
M1 Of type $3+2 s=5,3 s=3+t,-2-4 s=2-2 t$
A1 Or 2 diff values of s (or of t)
M1 and make a relevant deduction
A1 4 dep on all 3 prev marks
M1 New $3^{\text {rd }}$ eqn of type $a-4 s=2-2 t$
A1 2
10

7 Attempt parts with $u=x^{2}+5 x+7, \mathrm{~d} v=\sin x$
$1^{\text {st }}$ stage $=-\left(x^{2}+5 x+7\right) \cos x+\int(2 x+5) \cos x \mathrm{~d} x$
$\int(2 x+5) \cos x \mathrm{~d} x=(2 x+5) \sin x-\int 2 \sin x \mathrm{~d} x$
$=(2 x+5) \sin x+2 \cos x$
$\mathrm{I}=-\left(x^{2}+5 x+7\right) \cos x+(2 x+5) \sin x+2 \cos x$
(Substitute $x=\pi)-($ Substitute $x=0)$
$\pi^{2}+5 \pi+10 \quad$ WWW \quad AG

8 (i) $\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
$\frac{\mathrm{d}}{\mathrm{d} x}(-5 x y)=(-)(5) x \frac{\mathrm{~d} y}{\mathrm{~d} x}+(-)(5) y$
LHS completely correct $4 x-5 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-5 y+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}(=0)$
Substitute $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{8}$ or solve for $\frac{\mathrm{d} y}{\mathrm{~d} x} \&$ then equate to $\frac{3}{8}$
Produce $x=2 y$ WWW AG (Converse acceptable)
(ii) Substitute $2 y$ for x or $\frac{1}{2} x$ for y in curve equation

Produce either $x^{2}=36$ or $y^{2}=9$
AEF of $(\pm 6, \pm 3)$

M1 as far as $\mathrm{f}(x)+/-\int \mathrm{g}(x) \mathrm{d} x$
A1 signs need not be amalgamated at this stage
B1 indep of previous A1 being awarded
B1
A1 WWW
M1 An attempt at subst $x=0$ must be seen
A1 7
7

B1

M1 i.e. reasonably clear use of product rule

A1 Accept " $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ " provided it is not used
M1 Accuracy not required for "solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ "
A1 5 Expect $17 x=34 y$ and/or $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5 y-4 x}{2 y-5 x}$

M1

A1
A1 3 ISW Any correct format acceptable 8
9 (i) Attempt to sep variables in the form $\int \frac{p}{(x-8)^{1 / 3}} \mathrm{~d} x=\int q \mathrm{~d} t \mathrm{M} 1 \quad$ Or invert as $\frac{\mathrm{d} t}{\mathrm{~d} x}=\frac{r}{(x-8)^{1 / 3}} ; p, q, r$ consts
$\int \frac{1}{(x-8)^{1 / 3}} \mathrm{~d} x=k(x-8)^{2 / 3}$
All correct $\quad(+c)$

For equation containing ' c '; substitute $t=0, x=72$

Correct corresponding value of c from correct eqn
Subst their c \& $x=35$ back into eqn
$t=\frac{21}{8}$ or $2.63 / 2.625 \quad$ [C.A.O]
(ii) State/imply in some way that $x=8$ when flow stops

A1 k const

A1
M1 M2 for $\int_{72}^{35}=\int_{0}^{t}$ or $\int_{35}^{72}=\int_{0}^{t}$
A1
M1
A1 7
A2: $t=\frac{21}{8}$ or $2.63 / 2.625 \mathrm{WWW}$

Substitute $x=8$ back into equation containing numeric ' c ' M1
$t=6$

- k const

B1

A1 3

1 When an acceptable answer has been obtained, ignore subsequent working (ISW) unless stated otherwise.
2 Ignore working which has no relevance to question as set; e.g. in Qu.1, ignore all terms in x^{3} etc.
3 The ' M ' marks are awarded if it is clear that candidate is attempting to do what he/she should be doing.
4 If an ans is given (AG), working must be checked minutely as answer shown will nearly always be 'correct'. More reasoning/explanation is generally required than when the answer is not given.

Comments or Alternative methods

Question 1(ii)

Beware: there are often double mistakes leading to the correct terms - errors invalidate marks.
Question 2(ii)
For the first 2 marks, we're really testing $\int \frac{1}{x-2} \mathrm{~d} x$ and $\int \frac{1}{(x-2)^{2}} \mathrm{~d} x$; this is why we accept $\frac{1}{A}$ and/or $-\frac{1}{B}$.
For the $1^{\text {st }} \& 3^{\text {rd }}$ marks, accept $\ln (2-x)$ as these are the indef integ stages. At final, definite, stage, it will be penalised..
'Exact value' is required; so $0.0945 \ldots$ without equivalent \log version $\rightarrow B 0 \quad 2 \ln 2-3 \ln 3$ need not be simplified.

Question 4

Allow marks for part (iii) to be awarded at any stage of question.
So, if the Cartesian equation is worked out first of all, then award marks in part (i) as follow: if cart. eqn is found in the form $x=\mathrm{f}(y)$, award M1 for finding $\frac{\mathrm{d} x}{\mathrm{~d} y}$, inverting \& subst $y=4 t$ (in either order) if cart. eqn is found in the form $y=\mathrm{g}(x)$, award M1 for finding $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and substituting $x=2+t^{2}$ and, finally, A1 as in main scheme.

Question 5(i)

The problem here will centre on how the candidate manipulates the equation $u=\sqrt{x-1}$ to get x in terms of u. He/she could get $x=u^{2}+1$ (correct) or, perhaps, $x=u^{2}-1$ or $x=1-u^{2}$ (incorrect) or some other incorrect version. The $1^{\text {st }}, 4^{\text {th }} \& 5^{\text {th }}$ marks in part (i) are unaffected by the correctness or otherwise of this manipulation. However, any error seen must destroy the $2^{\text {nd }}$ and $3^{\text {rd }}$ marks - but candidates can still score 3 of the 5 marks.

For the A1, there must be some evidence of reduction to the given answer; the one main case that we are not accepting is where $\frac{8 u-2 u^{3}}{2+u}$ is said to be $4 u-2 u^{2}$ without any supporting evidence; long division will suffice; or if $8 u-2 u^{3}$ is said to be $(2+u)\left(4 u-2 u^{2}\right)$, then we will accept (as multiplication can easily be checked in the head whereas division is not reckoned to be). Note that ' 2 ' into ' $8 u^{\prime}$ 'gives ' $4 u^{\prime}$ ' and ' u ' into ' $-2 u^{3}$ ' gives ' $-2 u^{2}$,

Question 5(ii)(a)

This is just a ' 1 ' mark part so we give 1 or 0 purely dependent on the answer and we ignore any sloppy working.
A candidate writing $4-x-1=3-x$ will be awarded 0 marks; however, another candidate writing $4-x-1=5-x$ will be awarded the B1 mark. This is not an $\mathbf{A G}$ so the candidate does not know the required answer.

Question 6(i)

For demonstrating correct method for finding scalar product, I expect to see at least $2 / 3$ of the working correct.
Likewise for modulus: examine either vector, $\sqrt{2^{2}+3^{2}-4^{2}}$ will score M1 $\{2 / 3$ correct, prob $\sqrt{29}$ will follow anyway $\}$
Question 6(ii)
Occasionally candidates do not follow a 'sensible' method. However, the first M1 is always standard. The remaining 3 marks must be awarded for convincing arguments and/for accurate results.

Question 7

This is a question where signs are crucial and where the given answer may be obtained even with errors in the working; also the fact that the answer is AG means that many candidates will state it on the final line.
Using the standard method, 3 marks out of the 7 are fixed (the $2 @$ M1 and the final A1) but the other 4 marks depend on the capability of the candidate to integrate $\sin x$ and $\cos x$.

If he/she uses $\cos x$ for the integral of $\sin x$, candidate should get -(our version of 1 st main stage), so that's A0 but he/she still has to integrate $(2 x+5) \cos x$ for the $2^{\text {nd }}$ stage. Admittedly he/she may then make a further mistake when integrating $\cos x$ but the $2 @$ B1 are available. These 2 marks are an independent pair and only depend on the integral of $(2 x+5) \cos x$ being attempted. Whether it's the integral of $(2 x+5) \cos x$ or of $-(2 x+5) \cos x$ is immaterial. This gives a maximum of 4 out of 7 if $\sin x$ is incorrectly integrated.

Even though I have bracketed the 3 terms as $\left(x^{2}+5 x+7\right)$, we can expect some candidates to multiply out as 3 separate integrals., $\int x^{2} \sin x \mathrm{~d} x \quad$ and $\int 5 x \sin x \mathrm{~d} x \quad \int 7 \sin x \mathrm{~d} x$

Their equivalent $1^{\text {st }}$ stages are:
$-x^{2} \cos x+\int 2 x \cos x \mathrm{~d} x ; \quad-5 x \cos x+\int 5 \cos x \mathrm{~d} x ; \quad-7 \cos x \quad$ M1 + A1
Their equivalent $2^{\text {nd }}$ stages are:
$2 x \sin x+2 \cos x \quad$ B1
$5 \sin x \quad$ B1
To obtain the corresponding marks, all components must be correct.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

